532 research outputs found

    The Icelandic founder mutation BRCA2 999del5: analysis of expression

    Get PDF
    INTRODUCTION: A founder mutation in the BRCA2 gene (BRCA2 999del5) accounts for 7–8% of female breast cancers and for 40% of male breast cancers in Iceland. If expressed, the mutant gene would encode a protein consisting of the first 256 amino acids of the BRCA2 protein. The purpose of this study was to determine whether this mutant protein is produced in heterozygous individuals and, if so, what might be the functional consequences of mutant protein production. METHODS: The presence of BRCA2 999del5 transcripts in fibroblasts from heterozygous individuals was assayed by cDNA synthesis and sequencing. The potential protein-coding portion of BRCA2 999del5 was cloned into the pIND(SP1)/V5-His vector and expressed in COS7 cells. The presence of the mutant protein in cell lysates from heterozygous fibroblasts and from COS7 cells was tested by a number of methods including immunoprecipitation, affinity purification with nickel-coated agarose beads, Western blotting and ELISA, using antibodies to the N-terminal end of BRCA2, antiserum specific for the 16 nonrelevant amino acids at the carboxyl end and antibodies to fusion partners of recombinant proteins. RESULTS: The frequency of the BRCA2 999del5 transcript in heterozygous fibroblasts was about one-fifth of the wild-type transcript; however, no mutant protein could be detected. Overexpression of BRCA2 999del5 mRNA in COS7 cells failed to produce a mutant protein unless degradation by proteasomes was blocked. CONCLUSION: Our results show that the protein product of BRCA2 999del5 is extremely unstable. Therefore, an increase in breast cancer risk in BRCA2 999del5 carriers is due to haploinsufficiency at the BRCA2 locus

    UPF1, a Conserved Nonsense-Mediated mRNA Decay Factor, Regulates Cyst Wall Protein Transcripts in Giardia lamblia

    Get PDF
    The Giardia lamblia cyst wall is required for survival outside the host and infection. Three cyst wall protein (cwp) genes identified to date are highly up-regulated during encystation. However, little is known of the molecular mechanisms governing their gene regulation. Messenger RNAs containing premature stop codons are rapidly degraded by a nonsense-mediated mRNA decay (NMD) system to avoid production of non-functional proteins. In addition to RNA surveillance, NMD also regulates thousands of naturally occurring transcripts through a variety of mechanisms. It is interesting to know the NMD pathway in the primitive eukaryotes. Previously, we have found that the giardial homologue of a conserved NMD factor, UPF1, may be functionally conserved and involved in NMD and in preventing nonsense suppression. In this study, we tested the hypothesis that NMD factors can regulate some naturally occurring transcripts in G. lamblia. We found that overexpression of UPF1 resulted in a significant decrease of the levels of CWP1 and cyst formation and of the endogenous cwp1-3, and myb2 mRNA levels and stability. This indicates that NMD could contribute to the regulation of the cwp1-3 and myb2 transcripts, which are key to G. lamblia differentiation into cyst. Interestingly, we also found that UPF1 may be involved in regulation of eight other endogenous genes, including up-regulation of the translation elongation factor gene, whose product increases translation which is required for NMD. Our results indicate that NMD factor could contribute to the regulation of not only nonsense containing mRNAs, but also mRNAs of the key encystation-induced genes and other endogenous genes in the early-diverging eukaryote, G. lamblia

    Modelling negative feedback networks for activating transcription factor 3 predicts a dominant role for miRNAs in immediate early gene regulation

    Get PDF
    Activating transcription factor 3 (Atf3) is rapidly and transiently upregulated in numerous systems, and is associated with various disease states. Atf3 is required for negative feedback regulation of other genes, but is itself subject to negative feedback regulation possibly by autorepression. In cardiomyocytes, Atf3 and Egr1 mRNAs are upregulated via ERK1/2 signalling and Atf3 suppresses Egr1 expression. We previously developed a mathematical model for the Atf3-Egr1 system. Here, we adjusted and extended the model to explore mechanisms of Atf3 feedback regulation. Introduction of an autorepressive loop for Atf3 tuned down its expression and inhibition of Egr1 was lost, demonstrating that negative feedback regulation of Atf3 by Atf3 itself is implausible in this context. Experimentally, signals downstream from ERK1/2 suppress Atf3 expression. Mathematical modelling indicated that this cannot occur by phosphorylation of pre-existing inhibitory transcriptional regulators because the time delay is too short. De novo synthesis of an inhibitory transcription factor (ITF) with a high affinity for the Atf3 promoter could suppress Atf3 expression, but (as with the Atf3 autorepression loop) inhibition of Egr1 was lost. Developing the model to include newly-synthesised miRNAs very efficiently terminated Atf3 protein expression and, with a 4-fold increase in the rate of degradation of mRNA from the mRNA/miRNA complex, profiles for Atf3 mRNA, Atf3 protein and Egr1 mRNA approximated to the experimental data. Combining the ITF model with that of the miRNA did not improve the profiles suggesting that miRNAs are likely to play a dominant role in switching off Atf3 expression post-induction

    Perk-dependent repression of miR-106b-25 cluster is required for ER stress-induced apoptosis

    Get PDF
    Activation of the unfolded protein response sensor PKR-like endoplasmic reticulum kinase (Perk) attenuates endoplasmic reticulum (ER) stress levels. Conversantly, if the damage is too severe and ER function cannot be restored, this signaling branch triggers apoptosis. Bcl-2 homology 3-only family member Bim is essential for ER stress-induced apoptosis. However, the regulatory mechanisms controlling Bim activation under ER stress conditions are not well understood. Here, we show that downregulation of the miR-106b-25 cluster contributes to ER stress-induced apoptosis and the upregulation of Bim. Hypericin-mediated photo-oxidative ER damage induced Perk-dependent cell death and led to a significant decrease in the levels of miRNAs belonging to miR-106b-25 cluster in wild-type (WT) but not in Perk−/− MEFs. Further, we show that expression of miR-106b-25 and Mcm-7 (host gene of miR-106b-25) is co-regulated through the transcription factors Atf4 (activating transcription factor 4) and Nrf2 (nuclear factor-erythroid-2-related factor 2). ER stress increased the activity of WT Bim 3′UTR (untranslated region) construct but not the miR-106b-25 recognition site-mutated Bim 3′UTR construct. Overexpression of miR-106b-25 cluster inhibits ER stress-induced cell death in WT but did not confer any further protection in Bim-knockdown cells. Further, we show downregulation in the levels of miR-106b-25 cluster in the symptomatic SOD1G86R transgenic mice. Our results suggest a molecular mechanism whereby repression of miR-106b-25 cluster has an important role in ER stress-mediated increase in Bim and apoptosis

    miR-17* Suppresses Tumorigenicity of Prostate Cancer by Inhibiting Mitochondrial Antioxidant Enzymes

    Get PDF
    Aberrant micro RNA (miRNA) expression has been implicated in the pathogenesis of cancer. Recent studies have shown that the miR-17-92 cluster is overexpressed in many types of cancer. The oncogenic function of mature miRNAs encoded by the miR-17–92 cluster has been identified from the 5′ arm of six precursors. However, the function of the miRNAs produced from the 3′ arm of these precursors remains unknown. The present study demonstrates that miR-17* is able to suppress critical primary mitochondrial antioxidant enzymes, such as manganese superoxide dismutase (MnSOD), glutathione peroxidase-2 (GPX2) and thioredoxin reductase-2 (TrxR2). Transfection of miR-17* into prostate cancer PC-3 cells significantly reduces levels of the three antioxidant proteins and activity of the luciferase reporter under the control of miR-17* binding sequences located in the 3′-untranslated regions of the three target genes. Disulfiram (DSF), a dithiolcarbomate drug shown to have an anticancer effect, induces the level of mature miR-17* and cell death in PCa cells, which can be attenuated by transfection of antisense miR-17*. Increasing miR-17* level in PC-3 cells by a Tet-on based conditional expression system markedly suppresses its tumorigencity. These results suggest that miR-17* may suppress tumorigenicity of prostate cancer through inhibition of mitochondrial antioxidant enzymes

    MiR-339-5p inhibits breast cancer cell migration and invasion in vitro and may be a potential biomarker for breast cancer prognosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) play an important role in the regulation of cell growth, differentiation, apoptosis, and carcinogenesis. Detection of their expression may lead to identifying novel markers for breast cancer.</p> <p>Methods</p> <p>We profiled miRNA expression in three breast cancer cell lines (MCF-7, MDA-MB-231, and MDA-MB-468) and then focused on one miRNA, miR-339-5p, for its role in regulation of tumor cell growth, migration, and invasion and target gene expression. We then analyzed miR-339-5p expression in benign and cancerous breast tissue specimens.</p> <p>Results</p> <p>A number of miRNAs were differentially expressed in these cancer cell lines. Real-time PCR indicated that miR-339-5p expression was downregulated in the aggressive cell lines MDA-MB-468 and MDA-MB-231 and in breast cancer tissues compared with benign tissues. Transfection of miR-339-5p oligonucleotides reduced cancer cell growth only slightly but significantly decreased tumor cell migration and invasion capacity compared with controls. Real-time PCR analysis showed that BCL-6, a potential target gene of miR-339-5p, was downregulated in MDA-MB-231 cells by miR-339-5p transfection. Furthermore, the reduced miR-339-5p expression was associated with an increase in metastasis to lymph nodes and with high clinical stages. Kaplan-Meier analyses found that the patients with miR-339-5p expression had better overall and relapse-free survivals compared with those without miR-339-5p expression. Cox proportional hazards analyses showed that miR-339-5p expression was an independent prognostic factor for breast cancer patients.</p> <p>Conclusions</p> <p>MiR-339-5p may play an important role in breast cancer progression, suggesting that miR-339-5p should be further evaluated as a biomarker for predicting the survival of breast cancer patients.</p

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
    corecore